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Abstract: The lack of strategic planning in stormwater management has made rapidly urbanizing
cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in
peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned
rapid urbanization. As with many other low to middle-income countries, India depends on its
conventional and centralized stormwater drains for managing stormwater runoff. However, in the
absence of a robust stormwater management policy governed by the state, its impact trickles down to
a municipal level and the negative outcome can be clearly observed through a failure of the drainage
systems. This study examines the role of onsite and decentralized stormwater infiltration facilities,
as successfully adopted by some higher income countries, under physical and social variability
in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of
Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded
ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage
basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was
used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With
onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of
48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-
runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized
infiltration systems.

Keywords: stormwater runoff; decentralized and onsite infiltration facilities; climate change; dis-
tributed hydrological model

1. Introduction

Stormwater runoff is defined as the amount of rainfall that is unable to infiltrate the
ground and instead flows over the land into streams, rivers, or lakes as surface runoff.
While flowing over the land surface, it picks up materials such as leaves, stones, and
sediments, but also non-biodegradable plastics, trash, and other pollutants [1]. There are
two key drivers which result in stormwater runoff: (i) rapid and unplanned urbanization,
and (ii) climate change. The relation between urbanization and economic growth is a
complex one, yet the former has been strongly associated with bringing progress to a
nation [2].

Urbanization alters the nature of surface perviousness by reducing the ability of water
to infiltrate soil and, thus, the majority of water runs as overland water. Stormwater runoff
in urbanizing areas ranges from 10% in areas with natural land cover to 55% in areas
with 75% to 100% surface imperviousness [3]. While the percent increase is relational, it
is region specific and will depend upon the stormwater infiltration facilities as well as
on the level of imperviousness. The higher the surface imperviousness, the more surface
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runoff. Unplanned urbanization, instead of enhancing natural pathways for the flow of
water, replaces the surface by installing artificial drainage systems [4]. The second key
driver for runoff is climate change, the manifestation of anthropogenic activities, which is
characterized by extreme rainfall events. Stormwater runoff further intensifies in urban
areas where natural drainages meant to carry excess stormwater are replaced by unplanned
built up areas with inefficient artificial drainage systems [5].

The severity of adverse runoff impacts can vary across the physical components in an
urban watershed. Urbanization and climate change result in an increased runoff rate, less
groundwater recharge, a greater magnitude of river flow, and the recurrence of small to
major urban floods [4,6–9].

To study the effect of stormwater runoff on downstream water quality, Mohit and
Sellu [10] conducted a comparative impact study of an urban, a suburban, and a rural
stream, collecting dry and wet samples from 12 sites. They found that the urban stream
had the highest levels of biochemical oxygen demand (BOD), orthophosphate, total sus-
pended sediment (TSS), and surfactant concentrations. The study highlights a strong
correlation between the level of development in the watershed and impervious surface
coverage with BOD. Similar results were observed in an urban catchment of the rapidly
urbanizing Bhatinda city in India [11]. While the primary effects are mostly observed in
the hydrological systems and urban flooding, secondary effects include vulnerability to
health risks in humans as well as animals and marine or aquatic life [9,12].

Various comparative and standalone studies carried out through hydrological model-
ing, such as the soil and water assessment test (SWAT), and field observations emphasize
that infiltration facilities have a higher efficiency than storage facilities in reducing runoff
volumes [13,14]. These structures primarily mimic natural processes as they behave as a
source control and decentralized stormwater absorption system to facilitate the reduction
in surface runoff, minimize environmental degradation, and enhance infiltration. These
are developed via a combination of sound site planning, and structural and nonstructural
techniques. Some sustainable stormwater management practices include rain gardens,
biofiltration swales, bioretention pits, pervious pavements, and green roofs [6,15].

Using the SWMM model, Zahmatkesh et al. [16] investigated the impact of low impact
development practices, such as rainwater harvesting, porous pavement, and bioretention,
in mitigating the effects of climate change on stormwater runoff in a watershed of New
York City. With the implementation of low impact development practices for 2- and 50-year
return period extreme precipitation events, both runoff volume and peak discharge reduced
significantly. Hunt et al. [17], through field observations and hydrological modeling,
reported that bioretention pits can reduce 0% to 99% of sediment and nutrient losses
due to the protective vegetation layer as it acts as a natural filter. Similarly, in Monash
University, Melbourne, Hatt et al. [18] observed peak flow reductions between 49% and
80% for different rain gardens. Additionally, the vegetation of rain gardens effectively
removed the suspended solids and heavy metals by 90%.

Various assessment tools for evaluating the sustainability of stormwater practices have
been studied. A study conducted by Zhou et al. [19] in Denmark on urban flood modeling
used a hedonic valuation model for cost-benefit analysis and revealed that a conventional
drainage system, with traditional storage or source control facilities, has greater efficiency
in controlling and reducing the impacts of stormwater runoff. Furthermore, Zhou et al. [19]
analyzed the performance of open urban drainage systems using the cost-benefit approach
(CBA) and discussed the socio-economic benefits of the sustainable urban drainage system,
such as mitigating flood risks and enhancing the recreational value of local neighborhoods.
To validate this research finding, Zhou [5] further reviewed various assessment tools and
highlighted the use of cost-benefit analysis, life cycle assessment tools, and multi-criteria
analysis as measures to study economic benefits of rooftop gardens in addressing urban
water management issues.

India is on the brink of an urban revolution, with an expected 600 million predicted to
reside in cities by 2031 [20]. India is prone to major river flood risk and has been experienc-
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ing urban floods in recent years. Unplanned rapid urbanization is attributed as one of the
main reasons behind the increase in flood risks. Indian cities need to adopt unprecedented
solutions to tackle urban stormwater runoff to mitigate the unforeseeable occurrence of
hydro-meteorological hazards. Studies on decentralized stormwater infiltration practices
are largely lacking, especially in developing countries. Gogate et al. [15] assessed various
decentralized facilities, focusing on their advantages and disadvantages in the context of
India, and found varying impacts of infiltration measures with region, type of develop-
ment, soil, and drainage. Andimuthu et al. [21] tested the performance of urban storm
drainage networks and infiltration control measures for urban flood mitigation under a
climate change scenario in Chennai city, India. Aside from the use of urban stormwater
drainage networks, stormwater best management practices, such as permeable pavements,
rain gardens, green roofs, street planters, rain barrels, infiltration trenches and vegetative
swales, in hydrologic modeling were suggested to provide more accurate and effective
flood management systems.

These drawbacks form the main rationale of this study, which is to assess the de-
centralized stormwater infiltration practices under different physical variability in the
context of an urban area in a developing economy such as India. This study focuses on
the cumulative impact of stormwater runoff at a catchment scale, when the infiltration
facilities are implemented at a local scale, as it can help in reducing the numerous effects
of urban floods and waterlogging in unfavorable conditions. Lucknow city is facing an
unprecedented decline in groundwater level with each passing year. Most of the rain
received during the monsoon season, instead of being stored and infiltrated, is subjected to
flow as stormwater runoff. Hence, the objective of urban stormwater runoff modeling in
this study is to see: (i) how present and future land use and rainfall will have an impact
on surface runoff, and (ii) how decentralized or decentralized infiltration practices at the
household level can reduce the impact.

2. Materials and Methods
2.1. Study Area

This study was conducted in Lucknow, the capital city of India’s most populous
state, Uttar Pradesh. It receives an average rainfall of 890 mm, mostly from the southwest
monsoons between June and September. The city derives multiple benefits from the
monsoon- and groundwater-fed Gomti River, which passes through center of city dividing
it into Trans and Cis Gomti. As per a report by Sharma and Shukla [22], the drainage
system in the city was established five decades ago and the coverage of stormwater drains
is limited to one-third of the city. In the absence of proper stormwater drains, the rainwater
forces itself through sewerage lines, resulting in the choking of sewer lines which are not
maintained regularly, and leads to overflowing of drain water causing waterlogging and
flooding in low lying areas. While Gomti is a major water supply source in the city, it
receives its water from 26 drains at the study site, Kukrail Nala catchment (Figure 1).

Kukrail Nala, a fourth order tributary, is critical as it brings large volumes of water
into Gomti River while passing through central Lucknow city. Kukrail Nala basin, with a
river length of 26 km and an origin inside Kukrail reserve forest, falls in the Trans-Gomti
area. The Kukrail Nala basin is expected to contribute large volumes of flood water in
the downstream area due to basin characteristics and a slope of 6%. In recent years,
Kukrail Nala basin, which falls in Trans-Gomati area, has seen rapid urbanization and
concretization resulting in more flood water. In the past decade or so, Lucknow city, with its
increased impervious surface due to unplanned urbanization and the alteration in rainfall
pattern due to climate change, faces regular waterlogging in the downstream areas and
groundwater depletion.
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Figure 1. Location of Kukrail river basin inside Lucknow city, India.

2.2. Data Preparation

Land use land cover data is one of the key inputs for hydrological modeling. In this
study, the watershed modeling system (WMS), which is a popular tool for automated
watershed delineation, hydrologic and hydraulic modeling, floodplain mapping, and
storm drain modeling, was used for testing impacts of various stormwater infiltration
measures. The Water and Urban Initiative project of the United Nations University availed
land use land cover data for the 2007 (past), 2016 (present), and 2030 (projected) periods.
ASTER 30 m digital elevation model data was used for delineating the river basin and the
estimation of several other hydrologic parameters.

Annual daily maximum rainfall of 50- and 100-year return periods for present and
future climate conditions were applied for assessing the effects of increased extreme rain-
fall events. The estimation of extreme rainfall for the present climate was based on the
Lucknow weather station. On the other hand, multiple GCMs (Global Climate Models)
precipitation outputs were used for estimating extreme rainfalls for future conditions. Daily
precipitation output of two GCMs: MIROC-5 and MRI-GCM3 with spatial resolution of
140 km and 110 km, respectively, were employed for deriving future rainfall data. The use
of multiple emission scenarios and a general circulation model output are recommended
due to uncertainty with climate projections and, hence, GCMs under different representa-
tive concentration pathways (RCPs) were used for the study [23]. For this study RCP 4.5, a
representation of a stabilization scenario and mitigation policies, and RCP 8.5, a representa-
tion of an extreme, unstabilized, and destructive scenario, were used. The soil data was
retrieved from Natural Resources Conservation Service (NRCS), United States Department
of Agriculture, and the National Bureau of Soil Survey and Land Use Planning, India.

2.3. Stormwater Runoff Modeling

In this study, HEC-HMS, built into the WMS tool, was used for the stormwater runoff
modeling (Figure 2). Based on the different land use and climate conditions for present
and future periods, 10 different scenarios were established. The first six scenarios did not
include any infiltration measures. The ModClark model inside the HEC-HMS, which is
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a distributed parameter model, was selected for simulating flood values. A distributed
parameter model is one in which spatial variability of characteristics and processes are
considered explicitly. The list of parameters, methods, and their name or values used for
setting the ModClark stormwater runoff model in this study are shown in Table 1. The
Kukrail Nala basin modeling was carried out at a 30 m grid cell scale. The grid size is
user-specified and depends on the planning purpose. Travel time was calculated for each
grid cell and scaled to the overall watershed time of concentration. The lagged runoff
from each grid cell was routed through the linear reservoir. The outputs from each linear
reservoir were combined to form an outflow hydrograph.
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Table 1. Hydro-meteorological modeling methods, parameters, and their values for stormwater
runoff calculation.

Parameter/Method Description/Value

Loss rate method Gridded Soil Conservation Services (SCS)
Curve Number

Initial abstraction 0.2

Potential retention scale factor 1

Transformation method ModClark

Baseflow method Linear reservoir

GW1 fraction (Faster responding interflow) 0.5

GW2 fraction (Slower responding baseflow) 0.2

Storm type SCS type II 24 h distribution

2.3.1. Calibration of the Model

Calibration of the model was done to adjust certain parameter values of the model
until the results matched acceptably with the observed data. In the precipitation-runoff
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model, it can be measured through the degree of variation between computed and observed
hydrographs [24]. In this study, the model was calibrated by comparing the hydrograph
of the simulated and observed data. The observed data was obtained from Lucknow
Development Authority [25]. The maximum discharge that was observed in the Kukrail
was 425 m3/s. The model was calibrated by using parameters such as curve number, lag
time, and Muskingum parameters on hydrograph shape.

2.3.2. Scenario Development

Based on the calibrated model, the simulation was done for 10 scenarios with different
land use and rainfall values (Table 2). The land use was categorized as present (developing
conditions) and denser urban core area (projected). The model was run for scenario 1
through 6 with no infiltration measures for the original curve number, as mentioned in [26].
For scenarios 7 to 10, certain grids with higher curve numbers in high density built-up
areas were modified based on the soil type and infiltration facilities. Lower curve numbers
were assigned to see the difference in runoff discharge.

Table 2. Description for various land use and climate change scenarios.

Scenario Land Use Scenarios
(Year) Rainfall (mm) Climate

Scenarios
Return Period

(Year)

1 2016 199 Present climate 50

2 2030 256.54 Average of RCP
4.5 and 8.5 50

3 2030 299.72 Extreme among
RCPs 4.5 and 8.5 50

4 2016 226.06 Present climate 100

5 2030 290.06 Average of RCP
4.5 and 8.5 100

6 2030 337.8 Extreme among
RCPs 4.5 and 8.5 100

7 2030 + infiltration
measures 256.54 Average of RCP

4.5 and 8.5 50

8 2030 + infiltration
measures 299.72 Extreme among

RCPs 4.5 and 8.5 50

9 2030 + infiltration
measures 290.06 Average of RCP

4.5 and 8.5 100

10 2030 + infiltration
measures 337.8 Extreme among

RCPs 4.5 and 8.5 100

3. Results

The following results were obtained for ten different scenarios (Figure 3, Table 2):
Scenario 1: the hydrograph with a daily maximum rainfall of 199 mm resulted in a

peak discharge of 182 m3/s. The peak discharge at 17:00 h depicted a lag period of 5 h.
Scenario 2: the daily maximum rainfall of 256.64 mm generated a peak discharge of

259 m3/s. The excess rainfall of 104 mm at 12:00 h and a peak discharge at 17:00 h depicted
the same lag time as in scenario 1.

Scenario 3: the daily maximum rainfall of 299.72 mm led to an excess rainfall of
123.4 mm and a peak discharge of 315 m3/s. Analysis of the rainfall hyetograph and flood
hydrograph pointed to a time lag of 4 h with extreme rainfall at 12:00 h and peak discharge
at 16:00 h.
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Scenario 4: the daily maximum rainfall of 226.06 mm generated a peak discharge of
324 m3/s and a steep rising climb. The hydrograph suggested that the lag period was
reduced to 2 h, with excess rainfall of 54 mm at 13:00 h and a peak discharge at 15:00 h.

Scenario 5: the daily maximum rainfall of 290.06 mm generated a peak discharge of
426 m3/s. A steep rise in flow hydrograph, starting at 06:00 h, and a peak rise at 13:00 h
depicted that the time of concentration reduced with a lag period of 3 h.

Scenario 6: the daily maximum rainfall of 337.8 mm, which is an excess of 81 mm,
generated a high peak discharge of 509 m3/s at 15:00 h. The flow hydrograph depicted
that the lag period reduced to just 2 h with high runoff volumes.

Scenario 7: the daily maximum rainfall of 256.54 mm generated a discharge of 40 m3/s
at 02:00 h. The highest rainfall was recorded at 10:00 h. A peak discharge of 174 m3/s was
observed at 18:00 h with a lag time of 8 h.

Scenario 8: the daily maximum rainfall of 299.72 mm resulted in a discharge of 67 m3/s
at 02:00 h for alternative land use land cover condition. Extreme rainfall was recorded at
11:00 h. The peak discharge, 204 m3/s, was observed at 17:00 h with a lag time of 7 h.

Scenario 9: the daily maximum rainfall of 290.06 mm resulted in a flow discharge
of 56 m3/s at 02:00 h. Extreme rainfall was recorded at 10:00 h and a peak discharge of
174 m3/s was observed at 18:00 h with lag time of 8 h.

Scenario 10: the daily maximum rainfall of 337.8 mm resulted in a flow discharge of
72 m3/s at 03:00 h. Extreme rainfall was recorded at 10:00 h. A peak discharge of 232 m3/s
was observed at 17:00 h with lag time of 7 h.

A Pearson product-moment correlation coefficient was computed to assess the rela-
tionship between the peak rainfall values of 50- and 100-year return periods for the years
2016 and 2030 with consideration of the infiltration facilities and runoff volume at the
outlet of the Kukrail Nala basin (Figure 4a,b). For scenarios without infiltration facilities, a
strong and positive correlation was found between the two variables’ peak rainfall and
runoff volumes. There was a positive correlation between the two variables with r = 0.98,
n = 5, and p = 0.055. Despite of strong positive correlation between peak rainfall and runoff
volumes, the relation was not significant as p > 0.05. On the other hand, for the scenarios
with infiltration facilities, a scatterplot between peak rainfall and runoff volumes revealed
a strong and positive correlation. The relation was quite significant as p = 0.003. Runoff
volume for each scenario is shown is Table 3.

Table 3. Rainfall values, resulting runoff volumes, and lag time for different scenarios.

Scenario Rainfall Lag Time (Hours) Runoff Volume

S1 199 5 154
S2 256.54 4.5 218.7
S3 299.72 4 249.1
S4 226.06 2 193.8
S5 290.06 3 255.7
S6 337.8 2 290.5
S7 256.54 8 207.5
S8 299.72 7 224.6
S9 290.06 8 244.8

S10 337.8 7 253.2
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4. Discussion

Each scenario has a different characteristic for its hydrograph. Six scenarios (1–6) did
not consist of any infiltration facilities. Later, alternative stormwater capture measures
(scenarios 7–10) were applied to test their impacts on the flow hydrograph for effectively
reducing the runoff volume.
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4.1. Without Infiltration Systems in Practice

With a 50-year return period and a peak discharge of 182 m3/s for current conditions
(scenario 1), the study revealed that peak discharge will increase by 42% and 73% for
the increase in rainfall, corresponding to scenarios 2 and 3, respectively. This is in line
with the already established correlation between increased imperviousness and surface
runoff. An average increase of 2.5 times was reported in peak stormflow with the absence
of stormwater drains as impervious coverage increases from 0% to 100% [27]. This would
result in an increase in runoff volume by 34% in scenario 2 and 61% in scenario 3. However,
the percent increase in runoff volumes from scenario 2 to 3 was 20% and depended largely
on the calibrated climate models used. Meanwhile, for a 100-year return period, the peak
discharge of 324.4 m3/s under scenario 4 was projected to increase by 31.4% and 57% in
scenario 5 and 6, respectively. This would result in an increase in runoff volumes by 31%
and 49.9% in scenarios 5 and 6, respectively, from a business as usual scenario. However, the
percent increase in runoff volumes from scenario 5 to scenario 6 was projected to be around
only 13%. The slope, as observed in scenario 1 through 6, have similar observations as the
steeper the slope, the less lag time and the higher the peak discharge and runoff volume.
Sharma and Shukla [22] found similar observations in their studies. The percentage increase
in the runoff volume will also depend on manmade stormwater drainage, which were not
present in the land use land cover data. The increase in sudden peak and smaller lag times
also represents the smaller time of concentration as scenario changes from stabilized to
unstabilized ones.

4.2. With Infiltration Systems in Practice

A significant reduction in peak discharge and runoff volumes was observed by atten-
uating the excess precipitation through source control infiltration measures. It resulted in
an overall decrease for the 50-year return period in both scenarios 7 and 8, and a similar
observation was made under scenario 9 and scenario 10 for the 100-year return period.
A decrease in peak discharge and runoff volumes by 48% and 51%, respectively, was
observed for scenario 7 with infiltration facilitates, in comparison to scenario 2 with no
infiltration measures. Similarly, under scenario 8 with infiltration measures, the peak
discharge and runoff volumes were reduced by 54% and 10%, respectively, in comparison
to scenario 3 with no infiltration measures. For the 100-year return period, a decrease
in peak discharge and runoff volumes by 59.5% and 4%, respectively, was observed for
scenario 9, in comparison to scenario 5 with no infiltration measures. Similarly, under
scenario 10 with infiltration measures, the peak discharge and runoff volumes reduced
by 54.4% and 12%, respectively, in comparison to scenario 6 with no infiltration measures.
The decentralized stormwater facilities in the 50-year return period had extreme values
that were more effective in reducing the runoff volumes as compared to the extreme values
for the 100-year return period. The amount of infiltration will depend not just on type of
decentralized measure, but also how well it is maintained, and the results of discharge
will vary from a connected green roof system (more than 50% absorption on the roof) to
pervious pavement (material of manufacturing). Additionally, maintenance and clearance
of associated drainage will also impact the runoff discharge.

However, for managing flood water and stormwater reduction, we need to look
for the best management practices, which are practically feasible, low cost, and easy to
maintain, especially in resource-limited countries like India. The most important task is
to estimate the carrying capacity and stability of the existing stormwater management
system. Different possible management options are considered via demand supply gap
analysis and cost-benefit analysis. Some of the most common solutions are gutter filters,
infiltration trenches, permeable pavements, decentralized retention ponds, street sweeping
on a regular basis to prevent the choking of sewerage pipes, and surface sand filters,
etc. Another crucial component for the success of stormwater management practices is
community awareness, as the community is largely unaware about the advantages of this
management system and are not willing to participate in maintenance works.
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4.3. Correlation Analysis

Although there is a positive relation between rainfall and runoff, this relationship was
not significant for several scenarios without infiltration facilities. This result resonated with
the findings of Miguez and Magalhaes [3], which mentioned that rainfall may not be the
only criteria for high runoff volumes and other factors like geography, and geomorphology,
etc., might also impact runoff volume. However, runoff volumes can be significantly
reduced with infiltration facilities at times of peak rainfall events. It can be also said that
infiltration measures are more suitable for an average climate with extreme rainfall of a
50-years return period. The infiltration rate may not be effective if rainfall under extreme
climate with a 100-years return period occurs.

Thus, it can be said that the capacity of decentralized infiltration facilities to reduce the
runoff volume and peak discharge depend not only on land use and rainfall, but also on the
soil condition and topography of the watershed (slope and time of concentration). While
there is a correlation between land use and rainfall with runoff volume, it might be strong
or weak depending upon the condition of the area. The closer the distance between the
facilities in a gradient, the more the infiltration. It should also be noted that the infiltration
facilities are more effective for short-term planning.

4.4. BMP Implementation Challenges

Lucknow city has witnessed a major decline in water bodies which were once the
natural sponge for water storage and infiltration. Low- to medium-cost housing with
infiltration facilities could lead to incurring a higher per unit cost value, which might make
it unaffordable for many low to middle-income families. The regular operational and
maintenance cost of the facilities might influence the willingness of people to adopt it at a
household level and hence was considered a threat. The current developmental activities
in the peripheral area, resulting in higher abstraction of groundwater and lower infiltration,
was also seen as a threat. Lastly, as a part of a developing nation, water management is
not considered a priority when providing necessities for human survival, namely food,
shelter, and water, are more pressing. In the absence of strong groundwater management
policies, urbanizing areas are witnessing faster depletion of groundwater. While surface
imperviousness plays a role in increased runoff, it is also believed that having a small
built-up area of less than 200 square feet leaves one with no other option but to construct
homes without any gardens. Most people are unaware of decentralized infiltration facilities
as a result of loopholes in the regulatory body, due to a communication gap between
various departments, and the inconsistency in the field data collection as well as a lack of
data. The lack of communication in higher authorities trickles down to the public, where
awareness regarding the source of stormwater control is low. The present conditions of
the city, which have made it difficult to practice decentralized stormwater management,
include a lack of technical expertise, soil conditions, and maintenance cost. Maintaining
these facilities is a continuous challenge. Moreover, the government does not provide any
subsidies for maintenance and there are no provisions (tax rebate, grants, etc.) for green
infrastructure. If the available facilities are not properly maintained, causing runoff and
urban flooding, it is less likely that the decentralized management system will work. There
are no frameworks or committees to investigate policies specifically looking into subsidies
for infiltration facilities. This could directly affect any implementation practices and, from
an economic viewpoint, it is difficult to say if it will succeed in the future.

The monsoon is witnessing a shift in its pattern. While there is not much change in the
annual rainfall received, the intensity and frequency has altered. At present, the drainage
system and other traditional systems fail due to the heavy rainfall, which might cause the
decentralized stormwater infiltration facilities to fail too.

The following 5 strategies were suggested as the best to promote the idea of stormwater
infiltration practices:

WT1:a stakeholders workshop on integrated water resource management with the involve-
ment of citizens;
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WT2:preparation of strategic plans to promote decentralized stormwater infiltration prac-
tices and segregated and designated pipelines through the Master Plan, with a focus
on climate change;

WT3:the involvement of real estate for developing solar plus water secured societies;
WT4:focusing on research and development by investing in it and expanding the base of

technical experts among the growing population;
WT5:making the procedure of policymaking more transparent through coherent govern-

ment policies and with a focus on climate change.

5. Conclusions

Replenishment of surface and ground waterbodies through rainfall is a natural phe-
nomenon necessary to maintain the geo-hydrological balance of nature. Urbanization
and climate change pose a severe threat to the quality and quantity of waterbodies. It is
essential to recognize the associated risks of excess runoff from urban areas to enhance not
just the quality of the environment, but an overall quality of life. Conventional centralized
flood management systems are reported to have several limitations. There is much to
be learned from non-conventional, decentralized stormwater management systems that
municipalities have adopted to cope with urban floods and waterlogging in several parts
of developed countries. However, these facilities need to be mainstreamed into the com-
munities of vulnerable areas in the rapidly urbanizing cities of developing nations, where
the cities are overburdened with more complex stormwater. To achieve that, research
based on local conditions, practices, and management strategies should be understood in
detail and incorporated with more advanced scientific knowledge to tackle the problems
of conventional stormwater management systems.

This study delved into the hydrological assessment of decentralized stormwater
management practices in an urban watershed of Lucknow city in Northern India. The
study explored multiple scenarios based on current and future projections of land use and
climate change to understand impacts of urbanization and precipitation on stormwater
runoff. The results showed an increased runoff volume with the rapid urbanization and
climate change. Implementation of infiltration facilities using the local landscape can have
different impacts on the volume of runoff. The stormwater modeling study results showed
that conversion of impervious surfaces to pervious ones by installing a decentralized facility
can help infiltrate the water and immediately curb the peak runoff discharge. Decentralized
stormwater runoff infiltration systems are a relatively new concept in most developing
countries, and Lucknow city is no different. However, keeping in mind the growing scarcity
of water resources and climate change, more studies around best strategies to conserve
water quality and quantity should be encouraged at a policy level.

Author Contributions: Conceptualization, J.B., B.K.M. and P.K.; methodology, J.B., B.K.M. and P.K.;
formal analysis, J.B.; writing—original draft preparation, J.B., B.K.M. and P.K.; writing—review
and editing, J.B., B.K.M. and P.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the Water Urban Initiative Project (WUI)
of the United Nations University-Institute for the Advanced Study of Sustainability, Tokyo, Japan
and Japan Educational Exchanges and Services (JEES) for providing financial assistance for the
completion of this study.

Conflicts of Interest: The authors declare no conflict of interest.



www.manaraa.com

Hydrology 2021, 8, 93 13 of 13

References
1. Indiana Department of Environmental Management, 2007 Storm Water Runoff and Its Impact. Available online: http://www.in.

gov/idem/stormwater/files/stormwater_manual_chap_01.pdf (accessed on 27 March 2016).
2. Chen, M.; Zhang, H.; Liu, W.; Zhang, W. The Global Pattern of Urbanization and Economic Growth: Evidence from the Last

Three Decades. PLoS ONE 2014, 9, e103799. [CrossRef] [PubMed]
3. Miguez, G.M.; Magalhaes, P.C.L. Methods and techniques in urban engineering. In Urban Flood Control, Simulation, and

Management-an Integrated Approach; De Pina, A.C., Ed.; 2010; pp. 131–160. Available online: http://www.scribd.com/doc/584413
84/Methods-and-Techniques-in-Urban-Engineering (accessed on 20 October 2016).

4. Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in
a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [CrossRef]

5. Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014,
6, 976–992. [CrossRef]

6. Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate
change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [CrossRef]

7. Windapo, A. Examination of Green Building Drivers in the South African Construction Industry: Economics versus Ecology.
Sustainability 2014, 6, 6088–6106. [CrossRef]

8. Huang, H.; Cheng, S.; Wen, J.; Lee, J. Effect of growing watershed imperviousness on hydrograph parameters and peak discharge.
Hydrol. Process. 2008, 22, 2075–2085. [CrossRef]

9. Gebre, S.L. Application of the HEC-HMS Model for Runoff Simulation of Upper Blue Nile River Basin. J. Waste Water Treat. Anal.
2015, 6, 1. [CrossRef]

10. Mohit, M.A.; Sellu, G.M. Mitigation of Climate Change Effects through Non-structural Flood Disaster Management in Pekan
Town, Malaysia. Procedia Soc. Behav. Sci. 2013, 85, 564–573. [CrossRef]

11. Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol.
2009, 59, 839–846. [CrossRef]
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